Exponential Approximation, Method of Types for Empirical Neighbourhood Distributions of Random Graphs by Random Allocations
- K. Doku-Amponsah
Abstract
In this article we find exponential good approximation of the empirical neigbourhood distribution of symbolled random graphs conditioned to a given empirical symbol distribution and empirical pair distribution. Using this approximation we shorten or simplify the proof of (Doku-Amponsah \& Morters, 2010, Theorem~2.5); the large deviation principle (LDP) for empirical neigbourhood distribution of symbolled random graphs. We also show that the LDP for the empirical degree measure of the classical Erd\H{o}s-R\'{e}nyi graph is a special case of (Doku-Amponsah \& Moerters, 2010, Theorem~2.5). From the LDP for the empirical degree measure, we derive an LDP for the the proportion of isolated vertices in the classical Erd\H{o}s-R\'{e}nyi graph.- Full Text: PDF
- DOI:10.5539/ijsp.v3n2p110
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org