Exponential Approximation, Method of Types for Empirical Neighbourhood Distributions of Random Graphs by Random Allocations
Abstract
In this article we find exponential good approximation of the empirical neigbourhood distribution of symbolled random graphs conditioned to a given empirical symbol distribution and empirical pair distribution. Using this approximation we shorten or simplify the proof of (Doku-Amponsah \& Morters, 2010, Theorem~2.5); the large deviation principle (LDP) for empirical neigbourhood distribution of symbolled random graphs. We also show that the LDP for the empirical degree measure of the classical Erd\H{o}s-R\'{e}nyi graph is a special case of (Doku-Amponsah \& Moerters, 2010, Theorem~2.5). From the LDP for the empirical degree measure, we derive an LDP for the the proportion of isolated vertices in the classical Erd\H{o}s-R\'{e}nyi graph.