Probability Inequalities for the Sum of Random Variables When Sampling Without Replacement
- Kent Riggs
- Dean Young
- Jeremy Becnel
Abstract
Exponential-type upper bounds are formulated for the probability that the maximum of the partial sample sums of discrete random variables having finite equispaced support exceeds or differs from the population mean by a specified positive constant. The new inequalities extend the work of Serfling (1974). An example of the results are given to demonstrate their efficacy.- Full Text: PDF
- DOI:10.5539/ijsp.v2n4p75
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 20
- i10-index (December 2021): 51
- h5-index (December 2021): N/A
- h5-median(December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org