Cholesky Decomposition for the Vasicek Interest Rate Model
- Muhannad Al-Saadony
- Paul Hewson
- Julian Stander
Abstract
This paper concerns the estimation of parameters in the ``Vasicek Interest Rate'' model under a Bayesian framework. These popular models are challenging to fit with Markov chain Monte Carlo (McMC) methods as the structure of the model leads to considerable autocorrelation in the chains. Accordingly, we demonstrate that a simple re-parameterisation using the Cholesky decomposition can greatly improves the performance of the McMC algorithm and hence lead to valid Bayesian inference on the Vasicek model.- Full Text: PDF
- DOI:10.5539/ijsp.v2n4p22
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 20
- i10-index (December 2021): 51
- h5-index (December 2021): N/A
- h5-median(December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org