Assessing Goodness of Fit of Exponential Random Graph Models
- Yin Li
- Keumhee Carriere
Abstract
Exponential Random Graph Models (ERGMs) have been developed for fitting social network data on both static and dynamic levels. However, lack of methods with large sample asymptotic properties makes it inadequate to assess the goodness of fit of these ERGMs. Simulation-based goodness of fit plots proposed by Hunter et al. (2006) compare structured statistics of observed network with those of corresponding simulated networks. In this paper, we propose a new approach to assessing the goodness of fit of ERGMs. We demonstrate how to improve the existing graphical techniques via simulation studies. We also propose a simulation-based test statistic that will assist in model comparisons.- Full Text: PDF
- DOI:10.5539/ijsp.v2n4p64
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 20
- i10-index (December 2021): 51
- h5-index (December 2021): N/A
- h5-median(December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org