A Functional Generalized Hill Process and Its Uniform Theory
- Gane Lo
- El Deme
Abstract
We are concerned in this paper with the functional asymptotic behavior of the sequence of stochastic processes$$T_{n}(f)=\sum_{j=1}^{j=k}f(j)\left( \log X_{n-j+1,n}-\log X_{n-j,n}\right),\eqno(0.1)$$
indexed by some classes $\mathcal{F}$ of functions $f:\mathbb{N} \backslash \{0\} \longmapsto \mathbb{R}_{+}$ and where $k=k(n)$ satisfies
\begin{equation*}
1\leq k\leq n,k/n\rightarrow 0\text{ as }n\rightarrow \infty .
\end{equation*}
This is a functional generalized Hill process including as many new estimators of the extreme value index when $F$ is in the extreme value domain. We focus in this paper on its functional and uniform asymptotic law in the new setting of weak convergence in the space of bounded real functions. The results are next particularized for explicit examples of classes $\mathcal{F}$.
- Full Text: PDF
- DOI:10.5539/ijsp.v1n2p250
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org