A Short Note on Resolving Singularity Problems in Covariance Matrices
- Ezgi Ayyildiz
- Vilda Gazi
- Ernst Wit
Abstract
In problems where a distribution is concentrated in a lower-dimensional subspace, the covariance matrix faces a singularity problem. In downstream statistical analyzes this can cause a problem as the inverse of the covariance matrix is often required in the likelihood. There are several methods to overcome this challenge. The most well-known ones are the eigenvalue, singular value, and Cholesky decompositions. In this short note, we develop a new method to deal with the singularity problem while preserving the covariance structure of the original matrix. We compare our alternative with other methods. In a simulation study, we generate various covariance matrices that have different dimensions and dependency structures, and compare the CPU times of each approach.- Full Text: PDF
- DOI:10.5539/ijsp.v1n2p113
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org