Simulation-Based Optimization for Convex Functions Over Discrete Sets
- Eunji Lim
Abstract
We propose a new iterative algorithm for finding a minimum point of f_*:X \subset \mathbb{R}^d \rightarrow \mathbb{R}, when f_* is known to be convex, but only noisy observations of f_*(\textbf{x}) are available at \textbf{x} \in X for a finite set X. At each iteration of the proposed algorithm, we estimate the probability of each point \textbf{x} \in X being a minimum point of f_* using the fact that f_* is convex, and sample r points from X according to these probabilities. We then make observations at the sampled points and use these observations to update the probability of each point \textbf{x} \in X being a minimum point of f_*. Therefore, the proposed algorithm not only estimates the minimum point of f_* but also provides the probability of each point in X being a minimum point of f_*. Numerical results indicate the proposed algorithm converges to a minimum point of f_* as the number of iterations increases and shows fast convergence, especially in the early stage of the iterations.- Full Text: PDF
- DOI:10.5539/ijsp.v10n5p31
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org