Estimation of the Shape Parameter of a Wear-Out Failure Period for a Three-Parameter Weibull Distribution in a Small Sample
- Toru Ogura
- Takatoshi Sugiyama
- Nariaki Sugiura
Abstract
We propose a method to estimate a shape parameter for a three-parameter Weibull distribution. The proposed method first derives an unbiased estimator for the shape parameter independent of the location and scale parameters and then estimates the shape parameter using a minimum-variance linear unbiased estimator. Since the proposed method is expressed using a hyperparameter, its optimal hyperparameter is searched using Monte Carlo simulations. The recommended hyperparameter used for estimating the shape parameter depends on the sample size, and this causes no problems since the sample size is known when data is obtained. The proposed method is evaluated using a bias and a root mean squared error, and the results are very promising when the population shape parameter is 2 or more in the Weibull distribution representing the wear-out failure period. A numerical dataset is analyzed to demonstrate the practical use of the proposed method.
- Full Text: PDF
- DOI:10.5539/ijsp.v9n6p39
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org