Approaches for Structural Investigations of Binary Data Using Confirmatory Factor Models
- Karl Schweizer
- Siegbert Reiß
- Stefan Troche
Abstract
An investigation of the suitability of threshold-based and threshold-free approaches for structural investigations of binary data is reported. Both approaches implicitly establish a relationship between binary data following the binomial distribution on one hand and continuous random variables assuming a normal distribution on the other hand. In two simulation studies we investigated: whether the fit results confirm the establishment of such a relationship, whether the differences between correct and incorrect models are retained and to what degree the sample size influences the results. Both approaches proved to establish the relationship. Using the threshold-free approach it was achieved by customary ML estimation whereas robust ML estimation was necessary in the threshold-based approach. Discrimination between correct and incorrect models was observed for both approaches. Larger CFI differences were found for the threshold-free approach than for the threshold-based approach. Dependency on sample size characterized the threshold-based approach but not the threshold-free approach. The threshold-based approach tended to perform better in large sample sizes, while the threshold-free approach performed better in smaller sample sizes.
- Full Text: PDF
- DOI:10.5539/ijsp.v7n6p68
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org