Examining the Efficiency of American Put Option Pricing by Monte Carlo Methods with Variance Reduction

  •  George Chang    


We apply the Monte Carlo simulation algorithm developed by Broadie and Glasserman (1997) and the control variate technique first introduced to asset pricing via simulation by Boyle (1977) to examine the efficiency of American put option pricing via this combined method. The importance and effectiveness of variance reduction is clearly demonstrated in our simulation results. We also found that the control variates technique does not work as well for deep-in-the-money American put options. This is because deep-in-the-money American options are more likely to be exercised early, thus the value of the American options are less in line (or less correlated) with those of their European counterparts. the same FPESS can also be observed when investigators partition large datasets into smaller datasets to address a variety of auditing questions. In this study, we fill the empirical gap in the literature by investigating the sensitivity of the FPESS to partitioned datasets. We randomly selected 16 balance-sheet datasets from: China Stock Market Financial Statements Database™, that tested to be Benford Conforming noted as RBCD. We then explore how partitioning these datasets affects the FPESS by repeated randomly sampling: first 10% of the RBCD and then selecting 250 observations from the RBCD. This created two partitioned groups of 160 datasets each. The Statistical profile observed was: For the RBCD there were no indications of Non-Conformity; for the 10%-Sample there were no overall indications that Extended Procedures would be warranted; and for the 250-Sample there were a number of indications that the dataset was Non-Conforming. This demonstrated clearly that small datasets are indeed likely to create the FPESS. We offer a discussion of these results with implications for audits in the Big-Data context where the audit In-charge would find it necessary to partition the datasets of the client.


This work is licensed under a Creative Commons Attribution 4.0 License.