Stock Market Prediction Performance of Neural Networks: A Literature Review
- Özgür Ican
- Taha Bugra Çelik
Abstract
In this paper, previous studies featuring an artificial neural networks based prediction model have been reviewed. The main purpose of this review is to examine studies which use directional prediction accuracy (also known as hit ratio) or profitability of the model as a benchmark since other forecast error measures - namely mean absolute deviation (MAD), root mean squared error (RMSE), mean absolute error (MAE) and mean squared error (MSE) - have been criticized for the argument that they are not able to actually show how useful the prediction model is, in terms of financial gains (i.e. for practical usage). In order to meet the publication selection criteria mentioned above, a large number of publications have been examined and 25 of papers satisfying the criteria are selected for comparison. Classification of the eligible papers are summarized in a table format for future studies.
- Full Text: PDF
- DOI:10.5539/ijef.v9n11p100
Journal Metrics
Index
- Academic Journals Database
- ACNP
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- Berkeley Library
- CNKI Scholar
- COPAC
- Copyright Clearance Center
- Directory of Research Journals Indexing
- DTU Library
- EBSCOhost
- EconBiz
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Genamics JournalSeek
- GETIT@YALE (Yale University Library)
- Harvard Library
- Harvard Library E-Journals
- IBZ Online
- IDEAS
- JournalTOCs
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- PKP Open Archives Harvester
- Publons
- RePEc
- ROAD
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Ulrich's
- Universe Digital Library
- UoS Library
- ZBW-German National Library of Economics
- Zeitschriften Daten Bank (ZDB)
Contact
- Michael ZhangEditorial Assistant
- ijef@ccsenet.org