Predicting Financial Distress: Multi Scenarios Modeling Using Neural Network
- Mohamed Gameel
- Khairy El-Geziry
Abstract
This paper aims to investigate the best scenario to predict financial distress in the Egyptian stock market using a neural network model. The sample consists of 37 company listed on the EGX100. The sample period is eight years from 2001 to 2008, so we can isolate the effects of global financial Depression in the end of 2008, and the effect of economic instability, which coincided with the Egyptian revolution in 2011 tell now. The results show evidence that the best scenario for predicting distress in Egypt is that the company will be distressed if there is a decreasing in liquidity, decreasing in generating cash from sales with increasing in financial leverage.
- Full Text: PDF
- DOI:10.5539/ijef.v8n11p159
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
Index
- Academic Journals Database
- ACNP
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- Berkeley Library
- CNKI Scholar
- COPAC
- Copyright Clearance Center
- Directory of Research Journals Indexing
- DTU Library
- EBSCOhost
- EconBiz
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Genamics JournalSeek
- GETIT@YALE (Yale University Library)
- Harvard Library
- Harvard Library E-Journals
- IBZ Online
- IDEAS
- JournalTOCs
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- PKP Open Archives Harvester
- Publons
- RePEc
- ROAD
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Ulrich's
- Universe Digital Library
- UoS Library
- ZBW-German National Library of Economics
- Zeitschriften Daten Bank (ZDB)
Contact
- Michael ZhangEditorial Assistant
- ijef@ccsenet.org