A Methodology to Forecast Commodity Prices in Vietnam
- Thi Ngoc Trang Nguyen
- Ngoc Tho Tran
Abstract
Risk management of commodity prices is an important yet challenging task. Given the complex behaviour of commodity prices, this creates the need of using sophisticated models of commodity prices dynamics. Obviously, parameter estimation of such models poses another challenge. Previous literature has addressed this problem using Markov Chain Monte Carlo, which is computationally expensive for parameter estimation and inference. In this paper we develop an efficient Maximum Likelihood Estimation procedure based on the characteristic function. We then estimate parameters a stochastic volatility model with stochastic drift utilizing the time-series of rice and coffee prices. We show that such model produces realistic distributions of both commodity prices. Finally, using the estimated model parameters we calculate various risk measures such as Value at Risk or Expected Shortfall.
- Full Text: PDF
- DOI:10.5539/ijef.v7n5p44
Journal Metrics
Index
- Academic Journals Database
- ACNP
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- Berkeley Library
- CNKI Scholar
- COPAC
- Copyright Clearance Center
- Directory of Research Journals Indexing
- DTU Library
- EBSCOhost
- EconBiz
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Genamics JournalSeek
- GETIT@YALE (Yale University Library)
- Harvard Library
- Harvard Library E-Journals
- IBZ Online
- IDEAS
- JournalTOCs
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- PKP Open Archives Harvester
- Publons
- RePEc
- ROAD
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Ulrich's
- Universe Digital Library
- UoS Library
- ZBW-German National Library of Economics
- Zeitschriften Daten Bank (ZDB)
Contact
- Michael ZhangEditorial Assistant
- ijef@ccsenet.org