Microwave Assisted Synthesis of Cobalt Phosphate Nanoparticles and Their Antiproliferation against Human Lung Cancer Cells and Primary Osteoblasts in Vitro
- Guoqiang Zhou
- Wenying Wang
- Guangqi Gu
- Yang Li
- Ying Liu
Abstract
In this research, different nanostructures of cobalt phosphate nanoparticles were successfully prepared. Platelike and spherical cobalt phosphate were made by microwave synthesis method without any use of capping agent as structure directors. The reaction was completed under two different microwave irradiation power (500 W and 800 W) and times (5 min and 10 min) for the production of two types of cobalt phosphate nanoparticles. The synthesized nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), powder x-ray diffraction (XRD), BET, fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). The SEM images showed that the flowerlike nanostructure was an arrangement of cobalt phosphate plates with thickness of 80 nm and the average size of spherical cobalt phosphate nanoparticles was about 40 nm. Antiproliferation activity of cobalt phosphate nanoparticles as a function of particle concentration against human lung cancer cells and primary osteoblasts were carried out in vitro. The spherical nanoparticles showed better antiproliferation activity than the platelike nanoparticles and primary osteoblasts were more sensitive than human lung cancer cells to cobalt phosphate nanoparticles.
- Full Text: PDF
- DOI:10.5539/ijc.v3n4p127
Index
- Academic Journals Database
- Bibliography and Index of Geology
- CAB Abstracts
- CAS (American Chemical Society)
- COPAC
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Infotrieve
- Mendeley
- MIAR
- RePEc
- ResearchGate
- ROAD
- SHERPA/RoMEO
Contact
- Albert JohnEditorial Assistant
- ijc@ccsenet.org