Unbalanced Bidding Problem with Fuzzy Random Variables
- Dongran Zang
- Liang Lin
- Xingzi Liu
Abstract
Unbalanced bidding problem with mixed uncertainty of fuzziness and randomness is considered in this paper, where the bidding engineering quantities of each activity are assumed to be fuzzy random variables. Two types of fuzzy random models as expected value maximization model and maximax chance-constrained model are built to satisfy different optimization requirements. Then a hybrid intelligent algorithm integrating fuzzy random simulations, neural network and genetic algorithm is designed to solve these models. Finally, a numerical experiment is given to illustrate its effectiveness of the algorithm. The results show that the algorithm is feasible and effective.
- Full Text: PDF
- DOI:10.5539/ibr.v2n1p175
Journal Metrics
h-index (January 2024): 102
i10-index (January 2024): 947
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- CNKI Scholar
- COPAC
- CrossRef
- EBSCOhost
- EconBiz
- ECONIS
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- IBZ Online
- IDEAS
- Infotrieve
- Kobson
- LOCKSS
- Mendeley
- MIAR
- Norwegian Centre for Research Data (NSD)
- PKP Open Archives Harvester
- Publons
- Qualis/CAPES
- RePEc
- ResearchGate
- ROAD
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- ZBW-German National Library of Economics
- Zeitschriften Daten Bank (ZDB)
Contact
- Kevin DuranEditorial Assistant
- ibr@ccsenet.org