Growth Curves of Preschool Children in the Northeast of Iran: A Population Based Study Using Quantile Regression Approach


  •  Abolfazl Payande    
  •  Hamed Tabesh    
  •  Mohammad Shakeri    
  •  Azadeh Saki    
  •  Mohammad Safarian    

Abstract

Introduction: Growth charts are widely used to assess children’s growth status and can provide a trajectory of growth during early important months of life. The objectives of this study are going to construct growth charts and normal values of weight-for-age for children aged 0 to 5 years using a powerful and applicable methodology. The results compare with the World Health Organization (WHO) references and semi-parametric LMS method of Cole and Green. Methods: A total of 70737 apparently healthy boys and girls aged 0 to 5 years were recruited in July 2004 for 20 days from those attending community clinics for routine health checks as a part of a national survey. Anthropometric measurements were done by trained health staff using WHO methodology. The nonparametric quantile regression method obtained by local constant kernel estimation of conditional quantiles curves using for estimation of curves and normal values. Results: The weight-for-age growth curves for boys and girls aged from 0 to 5 years were derived utilizing a population of children living in the northeast of Iran. The results were similar to the ones obtained by the semi-parametric LMS method in the same data. Among all age groups from 0 to 5 years, the median values of children’s weight living in the northeast of Iran were lower than the corresponding values in WHO reference data. The weight curves of boys were higher than those of girls in all age groups. Conclusion: The differences between growth patterns of children living in the northeast of Iran versus international ones necessitate using local and regional growth charts. International normal values may not properly recognize the populations at risk for growth problems in Iranian children. Quantile regression (QR) as a flexible method which doesn’t require restricted assumptions, proposed for estimation reference curves and normal values.




This work is licensed under a Creative Commons Attribution 4.0 License.