Thermodynamic and Thermo-Econmic Analysis of Preheated and Blended Castor Oil Methyl Ester in a Compression Ignition Engine


  •  Menelik Walle Mekonen    
  •  Niranjan Sahoo    

Abstract

In this paper, energy, exergy, suitability and economic evaluation of a diesel engine running with diesel fuel and five different types of preheated biodiesel blends were evaluated experimentally. The experiments were carried out at varying engine brake mean effective pressures (bmeps). The energy and exergy rate components of the engine were callcualted and compared for each operating conditions and blends of fuel. The fuel properties of the castor oil methyl ester (COME) at different preheating temeperatures have been tested with a consideration of different biodiesel international standards. The test results shows that the fuel properties of COME improve with increase of fuel inlet temeperatures. At 114°C, kinematic viscosity and density decreased to (5.74 mm2/s and 862 kg/m3), whcich is close to diesel fuel, and the brake specific fuel consumption (BSFC) and brake thermal efficiency (BTHE) was improved by 33.1% and 49.6% compared to the fuel preheated temeperature of 42°C. The input fuel energy and exergy rates of blends of fuel were seen to be improved than diesel fuel. The maximum energetic and exergetic efficiency for blended fuels in the test engine at 372 bmep were found in the range of 25−28 % and 23-26%, respectively. The blends of fuel are marginally less sustainable than diesel fuel at every bmeps. The cost analyses show that, all blends of fuel offer quite higher economic cost with respect to diesel fuel. The full economic analysis reveals that only up to 60% blends of fuel is more affordable as compared to diesel.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0569
  • ISSN(Online): 1927-0577
  • Started: 2011
  • Frequency: semiannual

Journal Metrics

(The data was calculated based on Google Scholar Citations)

h-index (July 2022): 19

i10-index (July 2022): 53

h5-index (July 2022): N/A

h5-median(July 2022): N/A

Contact