Genetic Algorithms: Concepts, Design for Optimization of Process Controllers
- Rahul Malhotra
- Narinder Singh
- Yaduvir Singh
Abstract
Genetic Algorithm is a search heuristic that mimics the process of evaluation. Genetic Algorithms can be applied to process controllers for their optimization using natural operators. This paper discusses the concept and design procedure of Genetic Algorithm as an optimization tool. Further, this paper explores the well established methodologies of the literature to realize the workability and applicability of genetic algorithms for process control applications. Genetic Algorithms are applied to direct torque control of induction motor drive, speed control of gas turbine, speed control of DC servo motor for the optimization of control parameters in this work. The simulations were carried out in simulink package of MATLAB. The simulation results show better optimization of hybrid genetic algorithm controllers than fuzzy standalone and conventional controllers.
- Full Text: PDF
- DOI:10.5539/cis.v4n2p39
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org