Integrative Gene Selection for Classification of Microarray Data
- Huey Fang Ong
- Norwati Mustapha
- Md. Nasir Sulaiman
Abstract
Microarray data classification is one of the major interests in health informatics that aims at discovering hidden patterns in gene expression profiles. The main challenge in building this classification system is the curse of dimensionality problem. Thus, there is a considerable amount of studies on gene selection method for building effective classification models. However, most of the approaches consider solely on gene expression values, and as a result, the selected genes might not be biologically meaningful. This paper presents an integrative gene selection for improving microarray data classification performance. The proposed approach employs the association analysis technique to integrate both gene expression and biological data in identifying informative genes. The experimental results show that the proposed gene selection outperformed the traditional method in terms of accuracy and number of selected genes.- Full Text:
PDF
- DOI:10.5539/cis.v4n2p55
Journal Metrics
WJCI (2020): 0.439
Impact Factor 2020 (by WJCI): 0.247
Google Scholar Citations (March 2022): 6907
Google-based Impact Factor (2021): 0.68
h-index (December 2021): 37
i10-index (December 2021): 172
(Click Here to Learn More)
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org