Automatic Facial Expression Recognition System Based on Geometric and Appearance Features
- Aliaa A. A. Youssif
- Wesam A. A. Asker
Abstract
This paper presents a computer vision system for automatic facial expression recognition (AFER). The robust AFER system can be applied in many areas such as emotion science, clinical psychology and pain assessment it includes facial feature extraction and pattern recognition phases that discriminates among different facial expressions. In feature extraction phase a combination between holistic and analytic approaches is presented to extract 83 facial expression features. Expression recognition is performed by using radial basis function based artificial neural network to recognize the six basic emotions (anger, fear, disgust, joy, surprise, sadness). The experimental results show that 96% recognition rate can be achieved when applying the proposed system on person-dependent database and 93.5% when applying on person-independent one.
- Full Text: PDF
- DOI:10.5539/cis.v4n2p115
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org