One Improved Collaborative Filtering Method Based on Information Transformation
- Zhaoxing Liu
- Ning Zhang
Abstract
In this paper, we propose a novel method combined classical collaborative filtering (CF) and bipartite network structure. Different from the classical CF, user similarity is viewed as personal recommendation power and during the recommendation process; it will be redistributed to different users. Furthermore, a free parameter is introduced to tune the contribution of the user to the user similarity. Numerical results demonstrate that decreasing the degree of user to some extent in method performs well in rank value and hamming distance. Furthermore, the correlation between degree and similarity is concerned to solved the drastically change of our method performance.
- Full Text: PDF
- DOI:10.5539/cis.v4n1p186
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org