Music Generation Based on Convolution-LSTM

  •  Yongjie Huang    
  •  Xiaofeng Huang    
  •  Qiakai Cai    


In this paper, we propose a model that combines Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) for music generation. We first convert MIDI-format music file into a musical score matrix, and then establish convolution layers to extract feature of the musical score matrix. Finally, the output of the convolution layers is split in the direction of the time axis and input into the LSTM, so as to achieve the purpose of music generation. The result of the model was verified by comparison of accuracy, time-domain analysis, frequency-domain analysis and human-auditory evaluation. The results show that Convolution-LSTM performs better in music genertaion than LSTM, with more pronounced undulations and clearer melody.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: quarterly

Journal Metrics

WJCI (2020): 0.439

Impact Factor 2020 (by WJCI): 0.247

Google Scholar Citations (March 2022): 6907

Google-based Impact Factor (2021): 0.68

h-index (December 2021): 37

i10-index (December 2021): 172

(Click Here to Learn More)