The Analysis and Implementation of the K - Means Algorithm Based on Hadoop Platform
- Liu Xiang Wei
Abstract
In today's society has entered the era of big data, data of the diversity and the amount of data increases to the data storage and processing brought great challenges, Hadoop HDFS and MapReduce better solves the these two problems. Classical K-means algorithm is the most widely used one based on the partition of the clustering algorithm. At the completion of the cluster configuration based on, the k-means algorithm in cluster mode of operation principle and in the cluster mode realized kmeans algorithm, and the experimental results are research and analysis, summarized the k-means algorithm is run on the Hadoop platform's strengths and limitations.
- Full Text: PDF
- DOI:10.5539/cis.v11n1p98
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org