Enhancing Big Data Auditing


  •  Sara Alomari    
  •  Mona Alghamdi    
  •  Fahd S. Alotaibi    

Abstract

The auditing services of the outsourced data, especially big data, have been an active research area recently. Many schemes of remotely data auditing (RDA) have been proposed. Both categories of RDA, which are Provable Data Possession (PDP) and Proof of Retrievability (PoR), mostly represent the core schemes for most researchers to derive new schemes that support additional capabilities such as batch and dynamic auditing. In this paper, we choose the most popular PDP schemes to be investigated due to the existence of many PDP techniques which are further improved to achieve efficient integrity verification. We firstly review the work of literature to form the required knowledge about the auditing services and related schemes. Secondly, we specify a methodology to be adhered to attain the research goals. Then, we define each selected PDP scheme and the auditing properties to be used to compare between the chosen schemes. Therefore, we decide, if possible, which scheme is optimal in handling big data auditing.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: semiannual

Journal Metrics

WJCI (2022): 0.636

Impact Factor 2022 (by WJCI):  0.419

h-index (January 2024): 43

i10-index (January 2024): 193

h5-index (January 2024): N/A

h5-median(January 2024): N/A

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )

Contact