A Linguistic Steganalysis Approach Base on Source Features of Text and Immune Mechanism


  •  Licai Zhu    

Abstract

Linguistic steganalysis is a technique that discovering potentially hidden information embedded through using linguistically in plain text using. Varieties of syntax and multi-meanings of semantics for linguistics augment the difficulty of linguistic steganalysis intensely, thereby it is a challenge area. In this paper, we propose a novel steganalysis method for linguistics based on immune. This method has two attributions: i). basis statistical features of text are employed for blind steganalysis ii). immune technique is chosen to build a two-level detection mechanism to detect two categories of stego text respectively, one of which is Success-Stego-text and another is False-Stego-text. Appropriate detections are generated and preferable features are signed. Experiments prove the approach has higher accuracy than current steganalysis algorithms. Especially when the segment size of text is greater than 3kB, the accuracies of detecting for natural text and stego text are both more than 95%. 



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: quarterly

Journal Metrics

WJCI (2020): 0.439

Impact Factor 2020 (by WJCI): 0.247

Google Scholar Citations (March 2022): 6907

Google-based Impact Factor (2021): 0.68

h-index (December 2021): 37

i10-index (December 2021): 172

(Click Here to Learn More)

Contact