Anomaly Detection of Clinical Behavior Sequences
- Hebiao Yang
- Xiaodong Yuan
Abstract
The identification of abnormal clinical behavior during the process of treatments is of great significance for regulating the standard medical behavior. Due to clinical behavior constrained by time, and the timing of subsequence, GSP algorithm was modified in the present paper, and described the timing of subsequence by the introduction of the concept of legal subsequences in order to detect the frequent patterns in sequences; sequence association rules in accordance with the characteristics of territorial behavior were screened using association rule methods in order to establish rule base; Comparing the similarity between the detected frequent patterns and normal behavior rules, anomaly detection of the detected behavior was operated and the validity of the methods was verified through experiments.
- Full Text: PDF
- DOI:10.5539/cis.v3n3p197
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org