Pattern Extraction and Rule Generation of Forest Fire using Sliding Window Technique
- Ku Ku-Mahamud
- Jia Khor
Abstract
Patterns can be extracted from historical data and used to make predictions of future events. Such predictions are useful to support decision makers in various areas. In this study the sliding window technique is used to reveal forest fire patterns that relate four meteorological conditions (temperature, relative humidity, wind speed and rainfall) with burnt area size. Extracted patterns are then being grouped based on the size of burnt area. Rules are then generated resulting in eight distinct patterns of meteorological conditions that could predict the size of forest fire. Experimental results showed that extracted patterns produced good prediction accuracy.
- Full Text: PDF
- DOI:10.5539/cis.v2n3p113
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org