SAR Image De-Noising based on GNL-Means with Optimized Pixel-Wise Weighting in Non-Subsample Shearlet Domain
- Shuaiqi Liu
- Yu Zhang
- Qi Hu
- Ming Liu
- Jie Zhao
Abstract
SAR images have been widely used in many fields such as military and remote sensing. So the suppression of the speckle has been an important research issues. To improve the visual effect of non-local means, generalized non-local (GNL) means with optimized pixel-wise weighting is applied to shrink the coefficients of non-subsample Shearlet transform (NSST) of SAR image. The new method can optimize the weight of GNL, which not only improve the PSNR of de-noised image, but also can significantly enhance the visual effect of de-noising image.
- Full Text: PDF
- DOI:10.5539/cis.v10n1p16
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org