Home Thermal Modeling: Cooling Energy Consumption and Costs in Saudi Arabia
- Areej Malibari
- Amjad Gamlo
Abstract
Objectives: The consumption of electricity and its costs are expected to be increased in Saudi Arabia due to its rapid growth in population. As the Kingdom is characterized by extreme hot climate, a massive amount of electricity consumed by the residential sector goes to power air conditioners. To control this huge amount of energyconsumedin homes, thermal models have been generated with two or more parameters. Methodology: The households’ surveys have been conducted in order to collect the data. The Non-linear regression analysis has been carried out to obtain the outcomes of study. Moreover, household surveys have been conducted for data collection. The grid algorithm and the non-linear regression have been used to learn the parameters in the model to simulate the weather in Saudi Arabia. The temperature loggers have been placed in the houses to observe the behavior of residents of using cooling system. The web forecast has been used to analyze the temperature of cities on hourly basis. Results: Simple thermal model has been built using two parameters by applying the grid and non-linear regression methods for data fitting. Then the thermal model with envelope has also been created using four parameters by applying non-linear regression method for data fitting. Conclusion: It has been evaluated through outcomes that thermal model with envelope is better as compared to simple thermal model. Moreover, the data fitting by non-linear regression method has also been observed to perform better than data fitting by grid method.
- Full Text: PDF
- DOI:10.5539/cis.v9n4p22
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org