Infer the Semantic Orientation of Words by Optimizing Modularity
- Weifu Du
- Songbo Tan
Abstract
This paper proposes a novel algorithm, which attempts to attack the problem of word semantic orientation computing by optimizing the modularity of the word-to-word graph. Experimental results indicate that proposed method has two main advantages: (1) by spectral optimization of modularity, proposed approach displays a higher accuracy than other methods in inferring semantic orientation. For example, it achieves an accuracy of 88.8% on the HowNet-generated test set; (2) by effective usage of the global information, proposed approach is insensitive to the choice of paradigm words. In our experiment, only one pair of paradigm words is needed.
- Full Text: PDF
- DOI:10.5539/cis.v3n1p52
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org