Comparison of Fuzzy Inference System and Multiple Regression to Predict Synthetic Envelopes Clogging
- Bakhtiar Karimi
- Farhad Mirzaei
- Mohammad Javad Nahvinia
- Behnam Ababaei
Abstract
Geo-synthetic materials are being used with acceptable performance in soil and water projects worldwide. Geotextiles are one of the categories of geo-synthetics being used in drainage systems. First generation of geotextiles used in the late 1950’s as an alternative for gravel envelopes. In this research two methods (multiple regression and fuzzy interference system) evaluate to predict synthetic envelope clogging. In multiple regression method the correlation coefficients for PP450, PP700 and PP900 are 62.66%, 79.37% and 90.62%, respectively and results of fuzzy interference system and decision tree showed that this method have high potential in comparison with multiple regression and values of total classification accuracy for PP450, PP700 and PP900 are 98.6%, 97.3% and 98% respectively. Then final results of this research showed fuzzy interference systems by using decision tree have high potential to predict clogging in envelops.
- Full Text: PDF
- DOI:10.5539/cis.v3n3p122
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org