Kernel-Based Information Criterion


  •  Somayeh Danafar    
  •  Kenji Fukumizu    
  •  Faustino Gomez    

Abstract

This paper introduces Kernel-based Information Criterion (KIC) for model selection in regression analysis. The kernel-based complexity measure in KIC efficiently computes the interdependency between parameters of the model using a novel variable-wise variance and yields selection of better, more robust regressors. Experimental results show superior performance on both simulated and real data sets compared to Leave-One-Out Cross-Validation (LOOCV), kernel-based Information Complexity (ICOMP), and maximum log of marginal likelihood in Gaussian Process Regression (GPR).



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: quarterly

Journal Metrics

WJCI (2021): 0.557

Impact Factor 2021 (by WJCI):  0.304

h-index (December 2022): 40

i10-index (December 2022): 179

h5-index (December 2022): N/A

h5-median(December 2022): N/A

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )

Contact