Virtual Network Embedding Algorithms Based on Best-Fit Subgraph Detection
- Ashraf Shahin
Abstract
One of the main objectives of cloud computing providers is increasing the revenue of their cloud datacenters by accommodating virtual network requests as many as possible. However, arrival and departure of virtual network requests fragment physical network’s resources and reduce the possibility of accepting more virtual network requests. To increase the number of virtual network requests accommodated by fragmented physical networks, we propose two virtual network embedding algorithms, which coarsen virtual networks using Heavy Edge Matching (HEM) technique and embed coarsened virtual networks on best-fit sub-substrate networks. The performance of the proposed algorithms are evaluated and compared with existing algorithms using extensive simulations, which show that the proposed algorithms increase the acceptance ratio and the revenue.
- Full Text: PDF
- DOI:10.5539/cis.v8n1p62
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org