Interacted Multiple Ant Colonies Optimization Approach to Enhance the Performance of Ant Colony Optimization Algorithms
- Alaa Aljanaby
- Ku Ruhana Ku-Mahamud
- Norita Norwawi
Abstract
One direction of ant colony optimization researches is dividing the ants’ population into several colonies. These colonies work together to collectively solve an optimization problem. This approach offers good opportunity to explore a large area of the search space. It seems to be a suitable approach to improve the performance of ant algorithms. This paper proposes a new generic algorithmic approach utilizing multiple ant colonies with some new interaction techniques. Computational test shows promising results of the new approach. The proposed approach outperforms the single colony ant algorithms in term of the solution quality with the same computational effort.
- Full Text: PDF
- DOI:10.5539/cis.v3n1p29
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org