DOA Estimation for Coherent Sources in Transformed Space


  •  Yuan Cui    

Abstract

The existence of coherent sources results in the rank deficit of sample covariance matrix. Classic MUSIC(Multiple Signal Classification) can not classify coherent sources, and instead, generate an equivalent sources somewhere between them. In the proposed method, first, a specially designed transformation is constructed, which can suppress the coherent interfering sources while retain desired coherent sources. With the transformation the collected array signal can be mapping into a new data space. Since in the process of transformation, the contribution of the coherent interfering sources is suppressed, applying the classical music to the transformed data space will result in accurate DOA estimation of the coherent sources. Simulation experiment show that compared to the classical music, this method can accomplish accurate DOA estimation of coherent sources.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: semiannual

Journal Metrics

WJCI (2022): 0.636

Impact Factor 2022 (by WJCI):  0.419

h-index (January 2024): 43

i10-index (January 2024): 193

h5-index (January 2024): N/A

h5-median(January 2024): N/A

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )

Contact