A Knowledge Innovation Algorithm Based on Granularity
- yan taishan
Abstract
The structure of Human knowledge is regarded as granule state by rough sets theory. Granularity is used to denote this structure of knowledge. Knowledge itself evolves ceaselessly as creatures. Knowledge innovation is an important step of knowledge evolution course. Based on knowledge granularity, a knowledge innovation method was proposed in this paper. The main idea of this method is to constitute the partition granularity of knowledge base space ceaselessly depend on the measure consistency of attribute, till the sort of every granules in the granularity is only one. There is only one computation namely the measure consistency of attribute in the algorithm, so the numerical calculation work is little, the time complexity is low, and the algorithm is feasible absolutely. Experiments were taken on the imperfect knowledge base space of day weather classification by this algorithm, its working course was explained. The successful results show that this algorithm is correct and valid.
- Full Text: PDF
- DOI:10.5539/cis.v3n1p152
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org