Design and Analysis of Bayesian Model Predictive Controller
- Yijian Liu
- Weixing Qian
- Liming Di
Abstract
In this article, a novel predictive controller based on a Bayesian inferring nonlinear model (BMPC) is presented and analyzed. In the construction of the BMPC, the Bayesian inferring model is selected as the predictive model with the characteristics of on-line tracing ability to the actual controlled object. The nonlinear programming method called the steepest gradient is set as the receding horizon optimization algorithm of the BMPC. The on-line controller output is obtained using this method. The convergence analysis of the proposed BMPC is given and the examples (nonminimum phase and nonlinear objects) are selected to validate the performance of the BMPC. The simulation results show that with the help of the presented BMPC algorithm, the closed loop control system demonstrates the abilities of anti-disturbance and robustness.- Full Text: PDF
- DOI:10.5539/cis.v7n3p58
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org