Partitioned Methods in Computational Modelling on Fluid-Structure Interactions of Concrete Gravity-Dam
- W. Z. Lim
- R. Y. Xiao
- T. Hong
- C. S. Chin
Abstract
Fluid-structure interaction (FSI) has resulted in both complex applications and computing algorithmic improvements. The aim of this paper is to develop a better understanding of the fluid-structure interaction behaviour and the numerical coupling methods which can be used in analysing the FSI problem of a multi-physics nature computationally. There are two different systems in partitioned methods for coupling the fluid and structural domains which use strong and weak couple algorithms. Numerical results have been obtained on the hypothetical models for the close and open-spillways concrete gravity-dam. The two-way coupling partition method has been applied to the dynamic velocity flow and pressure using the ANSYS FEA software. A close comparison between the weak and strong coupled systems of two-way partitioned method has been made for the consideration of both close and open-spillways concrete gravity-dam.
- Full Text: PDF
- DOI:10.5539/cis.v6n4p154
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org