Abstract Sentence Classification for Scientific Papers Based on Transductive SVM
- Yuanchao Liu
- Feng Wu
- Ming Liu
- Bingquan Liu
Abstract
Presently, sentence-level researches are very significant in fields like natural language processing, information retrieval, machine translation etc. In this paper we present a practical task on sentence classification. The main purpose of this work is to classify the abstract sentences of scientific papers in the corpus built by ourselves into four categories- the background, the goal, the method and the result- which differ from each other in common usage, so that we can do further researches such as frequent pattern mining, information extraction and making a corpus for writing assistant system of scientific paper with these results. The main method of the classification is the Support Vector Machine, which is acknowledged among the best machine learning methods in the common text classification tasks. A semi-supervised method, Transductive Support Vector Machine, is also introduced into this four-class classification task to improve the accuracy. The experiments are conducted upon the corpus made by ourselves that consists of abstract sentences of scientific papers. The accuracy of the classifier finally reaches 75.86% with the semi-supervised method.
- Full Text: PDF
- DOI:10.5539/cis.v6n4p125
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org