Setting the Hidden Layer Neuron Number in Feedforward Neural Network for an Image Recognition Problem under Gaussian Noise of Distortion
- Vadim Romanuke
Abstract
There is considered an image recognition problem, defined for the single hidden layer perceptron, fed with 5-by-7 monochrome images on its input under Gaussian noise of their distortion. In this neural network the hidden layer neuron number should be set optimally to maximize its productivity. For minimizing traintime duration and recognition error rate both simultaneously there are suggested two ways of solving the corresponding two-objective minimization problem. One of them deals with equilibrium conception, and the other takes Bernoulli criterion for getting the single minimization problem.
- Full Text: PDF
- DOI:10.5539/cis.v6n2p38
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org