Flow Regime Classification Using Artificial Neural Network Trained on Electrical Capacitance Tomography Sensor Data

  •  Khursiah Zainal-Mokhtar    
  •  Junita Mohamad-Saleh    
  •  Hafizah Talib    
  •  Najwan Osman-Ali    


The main goal of the presented work is to analyse the performance of the Multi-Layer Perceptron (MLP) neural network for flow regime classification based on sets of simulated Electrical Capacitance Tomography (ECT) data. Normalised ECT data have been used to separately train several MLPs employing various commonly used back-propagation learning algorithms, namely the Levenberg-Marquardt (LM), Quasi-Newton (QN) and Resilient-Backpropagation (RP), to classify the gas-oil flow regimes. The performances of the MLPs have been analysed based on their correct classification percentage (CCP). The results demonstrate the feasibility of using MLP, and the superiority of LM algorithm for flow regime classification based on ECT data.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: quarterly

Journal Metrics

h-index (December 2020): 35

i10-index (December 2020): 152

h5-index (December 2020): N/A

h5-median(December 2020): N/A

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )