Identification of Sensitive Items in Privacy Preserving - Association Rule Mining

  •  K. Duraiswamy    
  •  N. Maheswari    


The concept of Privacy-Preserving has recently been proposed in response to the concerns of preserving personal or sensible information derived from data mining algorithms. For example, through data mining, sensible information such as private information or patterns may be inferred from non-sensible information or unclassified data. As large repositories of data contain confidential rules that must be protected before published, association rule hiding becomes one of important privacy preserving data mining problems. There have been two types of privacy concerning data mining. Output privacy tries to hide the mining results by minimally altering the data. Input privacy tries to manipulate the data so that the mining result is not affected or minimally affected. For some applications certain sensitive predictive rules are hidden that contain given sensitive items.  To identify the sensitive items an algorithm SENSIDENT is proposed. The results of the work have been given.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: quarterly

Journal Metrics

WJCI (2020): 0.439

Impact Factor 2020 (by WJCI): 0.247

Google Scholar Citations (March 2022): 6907

Google-based Impact Factor (2021): 0.68

h-index (December 2021): 37

i10-index (December 2021): 172

(Click Here to Learn More)