Research on Decision Forest Learning Algorithm

  •  Limin Wang    
  •  Xiongfei Li    


Decision Forests are investigated for their ability to provide insight into the confidence associated with each prediction, the ensembles increase predictive accuracy over the individual decision tree model established. This paper proposed a novel “bottom-top” (BT) searching strategy to learn tree structure by combining different branches with the same root, and new branches can be created to overcome overfitting phenomenon.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: quarterly

Journal Metrics

WJCI (2021): 0.557

Impact Factor 2021 (by WJCI):  0.304

h-index (December 2022): 40

i10-index (December 2022): 179

h5-index (December 2022): N/A

h5-median(December 2022): N/A

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )