Estimate 3D Arm Motion with Hierarchical Limb Model
- Xuesong Yu
- Jiafeng Liu
Abstract
<!-- /* Font Definitions */ @font-face {font-family:??; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-alt:SimSun; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 135135232 16 0 262145 0;} @font-face {font-family:"\@??"; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 135135232 16 0 262145 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:??; mso-font-kerning:1.0pt;} p.MsoBodyText, li.MsoBodyText, div.MsoBodyText {margin-top:7.8pt; margin-right:0cm; margin-bottom:2.5pt; margin-left:0cm; mso-para-margin-top:.5gd; mso-para-margin-right:0cm; mso-para-margin-bottom:2.5pt; mso-para-margin-left:0cm; text-align:justify; text-justify:inter-ideograph; line-height:12.0pt; mso-line-height-rule:exactly; mso-pagination:none; font-size:10.0pt; mso-bidi-font-size:11.0pt; font-family:"Times New Roman"; mso-fareast-font-family:??; mso-font-kerning:1.0pt; mso-bidi-font-weight:bold;} /* Page Definitions */ @page {mso-page-border-surround-header:no; mso-page-border-surround-footer:no;} @page Section1 {size:612.0pt 792.0pt; margin:72.0pt 90.0pt 72.0pt 90.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} -->Focusing on the problem of low computation efficiency in the process of tracking human 3D motion, an algorithm for Estimating 3D arm motion with Hierarchy Limb Model (HLM) is proposed. In our algorithm, the Hierarchy Limb Model (HLM) is proposed based on the human 3D skeleton model. Facilitated by graph decomposition, the arm motion state space, modeled by Hierarchy Limb Model (HLM), can be discomposed into low dimension subspaces. The Top-Down search strategy and the Particle Filter are used to tracking the arm motion, thus the amount of particle in tracking can be reduced. To handle server self-occlusions, the weighted color histogram and image contour are used to modeling the observation likelihood function. The result of experiment shows that our algorithm can advance the computation efficiency and handle effectively self-occlusions.
- Full Text: PDF
- DOI:10.5539/cis.v2n1p156
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org