Rule Extraction on Numeric Datasets Using Hyper-rectangles
- Waldo Hasperué
- Laura Lanzarini
- Armando De Giusti
Abstract
When there is a need to understand the data stored in a database, one of the main requirements is being able to extract knowledge in the form of rules. Classification strategies allow extracting rules almost naturally. In this paper, a new classification strategy is presented that uses hyper-rectangles as data descriptors to achieve a model that allows extracting knowledge in the form of classification rules. The participation of an expert for training the model is discussed. Finally, the results obtained using the databases from the UCI repository are presented and compared with other existing classification models, showing that the algorithm presented requires less computational resources and achieves the same accuracy level and number of extracted rules.
- Full Text: PDF
- DOI:10.5539/cis.v5n4p116
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org