Text Document Pre-Processing Using the Bayes Formula for Classification Based on the Vector Space Model
- Dino Isa
- Lee Lam Hong
- V. P. Kallimani
- R. Rajkumar
Abstract
This work utilizes the Bayes formula to vectorize a document according to a probability distribution based on keywords reflecting the probable categories that the document may belong to. The Bayes formula gives a range of probabilities to which the document can be assigned according to a pre determined set of topics (categories). Using this probability distribution as the vectors to represent the document, the text classification algorithms based on the vector space model, such as the Support Vector Machine (SVM) and Self-Organizing Map (SOM) can then be used to classify the documents on a multi-dimensional level, thus improving on the results obtained using only the highest probability to classify the document, such as that achieved by implementing the naïve Bayes classifier by itself. The effects of an inadvertent dimensionality reduction can be overcome using these algorithms. We compare the performance of these classifiers for high dimensional data.- Full Text: PDF
- DOI:10.5539/cis.v1n4p79
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org