A Genetic K-means Clustering Algorithm Based on the Optimized Initial Centers
- Min Feng
- Zhenyan Wang
Abstract
An optimized initial center of K-means algorithm(PKM) is proposed, which select the k furthest distance data in the high-density area as the initial cluster centers. Experiments show that the algorithm not only has a weak dependence on the initial data, but also has fast convergence and high clustering quality. To obtain effective cluster and accurate cluster, we combine the optimized K-means algorithm(PKM) and genetic algorithm into a hybrid algorithm (PGKM). It can not only improve compactness and separation of the algorithm but also automatically search for the best cluster number k, then cluster after optimizing the k-centers. The optimal cluster is not obtained until terminal conditions are met after continuously iterating. Experiments show that the algorithm has good cluster quality and overall performance.
- Full Text: PDF
- DOI:10.5539/cis.v4n3p88
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org