A Text Image Segmentation Method Based on Spectral Clustering
- Rui Wu
- Jianhua Huang
- Xianglong Tang
- Jiafeng Liu
Abstract
We present a novel approach for solving the text segmentation problem in natural scene images. The proposed algorithm uses the normalized graph cut(Ncut) as the measure for spectral clustering, and the weighted matrices used in evaluating the graph cuts are based on the gray levels of an image, rather than the commonly used image pixels. Thus, the proposed algorithm requires much smaller spatial costs and much lower computation complexity. Experiments show the superior performance of the proposed method compared to the typical thresholding algorithms.- Full Text:
PDF
- DOI:10.5539/cis.v1n4p9
Journal Metrics
WJCI (2020): 0.439
Impact Factor 2020 (by WJCI): 0.247
Google Scholar Citations (March 2022): 6907
Google-based Impact Factor (2021): 0.68
h-index (December 2021): 37
i10-index (December 2021): 172
(Click Here to Learn More)
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org