Research on Entity Label Value Assignment Method in Knowledge Graph

  •  Linqing Yang    
  •  Bo Liu    
  •  Youpei Huang    
  •  Xiaozhuo Li    


The lack of entity label values is one of the problems faced by the application of Knowledge Graph. The method of automatically assigning entity label values still has shortcomings, such as costing more resources during training, leading to inaccurate label value assignment because of lacking entity semantics. In this paper, oriented to domain-specific Knowledge Graph, based on the situation that the initial entity label values of all triples are completely unknown, an Entity Label Value Assignment Method (ELVAM) based on external resources and entropy is proposed. ELVAM first constructs a Relationship Triples Cluster according to the relationship type, and randomly extracts the triples data from each cluster to form a Relationship Triples Subset; then collects the extended semantic text of the entities in the subset from the external resources to obtain nouns. Information Entropy and Conditional Entropy of the nouns are calculated through Ontology Category Hierarchy Graph, so as to obtain the entity label value with moderate granularity. Finally, the Label Triples Pattern of each Relationship Triples Cluster is summarized, and the corresponding entity is assigned the label value according to the pattern. The experimental results verify the effectiveness of ELVAM in assigning entity label values in Knowledge Graph.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: quarterly

Journal Metrics

WJCI (2020): 0.439

Impact Factor 2020 (by WJCI): 0.247

Google Scholar Citations (March 2022): 6907

Google-based Impact Factor (2021): 0.68

h-index (December 2021): 37

i10-index (December 2021): 172

(Click Here to Learn More)