Multi-Channel Similarity Based Compression
- Sergey Voronin
Abstract
Many situations arise where data is collected continuously across multiple channels or over multiple similar subjects. In many cases, transmission of the data across all channels is necessary, but the process can be made more efficient by making use of present similarity between data across different channels. We present here a combined compression approach which exploits approximate linear dependence and high correlation coefficient values between pairs of transformed and sorted channel data vectors. By exploiting this similarity, substantial compression gains can be achieved compared to compression of data per each individual channel.
- Full Text: PDF
- DOI:10.5539/cis.v13n1p80
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org